Who Are the Candidates for Renal Denervation?

Wojtek Wojakowski, MD, PhD

Department of Cardiology and Structural Heart Diseases

Medical University of Silesia, Katowice, Poland

President Association for Cardiovascular Interventions

Polish Cardiac Society

GÓRNOŚLĄSKIE CENTRUM MEDYCZNE Szpital w Ochojcu

- Medtronic Advisory Board
- Ablative Solutions investigator in CE-Mark trial and postmarket trial

- In resistant hypertension the renal sympathetic outflow is highly activated
- Sympathetic activation is a significant predictor of a poor prognosis
 - heart failure
 - myocardial infarction
 - chronic kidney disease
- Sympathetic drive contributes to Na+ retention, renin release, reduced RBF, and resistance to loop diuretics
- Increased sympathetic activity is present in obstructive sleep apnea

FUNDAMENTAL PHYSIOLOGICAL LINK BETWEEN AUTONOMIC NERVE SYSTEM AND RESISTANT HYPERTENSION

- 1. Drug-resistant hypertension
- 2. Patients with characteristics = sham-controlled RCT
- 3. "Neurogenic" hypertension = clinical/laboratory/physiological profile of high sympathetic activity
 - obesity
 - renal hypertension
 - persistently elevated heart rate
 - hypertensive patient reporting chronic stress
- 3. Mild essential hypertension in younger patients with no CV remodeling
- 4. Non-compliant with medical therapy
- 5. Side effects of the drugs
- 6. Patients unwilling to take multiple drugs throughout lifetime

- 1. Drug-resistant hypertension
- 2. Patients with characteristics = sham-controlled RCT
- 3. "Neurogenic" hypertension = clinical/laboratory/physiological profile of high sympathetic activity
 - obesity
 - renal hypertension

- persistently elevated heart rate
- hypertensive patient reporting chronic stress
- 3. Mild essential hypertension in younger patients with no CV remodeling
- 4. Non-compliant with medical therapy
- 5. Side effects of the drugs
- 6. Patients unwilling to take multiple drugs throughout lifetime

Renal hypertension

- 2. Stimulation of renal afferent nerves
- 3. Ablation of renal afferent nerves reduces central sympathetic outflow in CKD and end-stage real

disease

Renal hypertension

- prospective, longitudinal study of

patients with CKD (stages 2 - 4) and

refractory hypertension treated with

RA denervation

- 4.6 \pm 1.3 medicationa

2.9 (5-14 ablations/artery)

3. n=30, follow-up 24 months

Am. J. Hypertens., 18 (2016), pp. 190-196

Identification of the right patients

- 1. Clinical
 - Obesity
 - OSA
 - Self-reported chronic stress
 - Morning BP surge
 - Elevated HR
 - CKD
 - HF
 - AFib
- 2. Laboratory tests
 - Plasma/urine NE levels
- 3. Physiology testing
 - HRV
 - Nerve activity
 - Arterial pulse vave velocity

Identification of the right patients

- 1. Clinical
 - Obesity
 - OSA
 - Self-reported chronic stress
 - Morning BP surge
 - Elevated HR
 - CKD
 - HF
 - AFib
- 2. Laboratory tests
 - Plasma/urine NE levels
- 3. Physiology testing
 - HRV
 - Nerve activity
 - Arterial pulse vave velocity

Not widely available Not well standardized

Costly

Not supported by clinical trials

- 1. Isolated systolic hypertension ?
- 2. Secondary hypertension
- 3. White-caoat hypertension
- 4. High risk anatomy (RAS, AAA, small accessory arteries)

Figure 1 Office systolic blood pressure change at 6 months. BL, baseline; CH, combined (systolic-diastolic) hypertension; GSR, Global SYM-PLICITY Registry; HTN-3, SYMPLICITY HTN-3 trial; ISH, isolated systolic hypertension; RDN, catheter-based renal denervation.

Table 27 Incidence and typical causes of secondary hypertension according to age

Age group	Per cent with underlying cause	Typical causes
Young children (<12 years)	70-85	 Renal parenchymal disease Coarctation of the aorta Monogenic disorders
Adolescents (12–18 years)	10–15	 Renal parenchymal disease Coarctation of the aorta Monogenic disorders
Young adults (19–40 years)	5–10	 Renal parenchymal disease Fibromuscular dysplasia (especially in women) Undiagnosed monogenic disorders
Middle-aged adults (41–65 years)	5–15	Primary aldosteronism Obstructive sleep apnoea Cushing's syndrome Phaeochromocytoma Renal parenchymal disease Atherosclerotic renovascular disease
Older adults (>65 years)	5–10	 Atherosclerotic renovascular disease Renal parenchymal disease Thyroid disease

Mahfoudet al, EHJ 2016 Williams et al, EHJ, 2018

- 1. Patients with primary HTN
- 2. Resistant to medical therapy (meeting inclusion criteria of RDN trials)
- **3.** Intolerance of meds
- 4. Non-compliant
- 5. Patients preference

- 1. Patients with primary HTN
- 2. Resistant to medical therapy (meeting inclusion criteria of RDN trials)
- **3.** Intolerance of meds
- 4. Non-compliant
- 5. Patients preference
- 6. Patients likely to have particular benefits ("neurogenic" HTN)
 - 1. Afib
 - 2. HF
 - 3. Younger patients
- 7. Renal HTN